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ABSTRACT

Today’s increasing connectivity between separate entities within an organization has
encouraged us to revisit the old promises of departmental computing and propose a
new framework that can expand its potentials. When we view departmental computing
from a distributed group decision support systems (DGDSS) perspective, it becomes
evident that not only corporate data but also decision models should be an integral
part of managerial decision making. In this paper, we present a framework for col-
laborative model management systems (MMS), which coordinates the changes made
to shared decision models in the modelbase so that the net effect of the changes can
be systematically propagated across multiple departments by automatically updating
the model views. Details of the proposed model change propagation mechanism are
discussed along with a realistic departmental computing scenario.

Keywords: Model management systems, Departmental computing, Mathematical
models, Object-oriented database management system, View synchronization.

RESUME

Le fait que nous découvrons aujourd hui des rapports de plus en plus évidents entre
des entités séparées au sein d’une organisation nous incite a remettre en question les
vieux poncifs de “departmental computing” et & poser les jalons vers une plus grande
ouverture. Si nous considérons le “departmental computing” du point de vue des “dis-
tributed group decision support systems (DGDSS)”, il devient évident que non seule-
ment les données de 1’entreprise mais aussi les modéles de décision devraient faire partie
intégrante du processus de décision gestionnaire. Dans cet article nous présentons un
nouveau cadre o pourraient fonctionner des “model management systems (MMS)” de
collaboration. Ce cadre permettrait une coordination des changements apportés aux
modeles de décision partagée du “model base”, de sorte que les effets de ces change-
ments seraient systématiquement repercutés sur une multiplicité de départements par
une remise & jour antomatique des “model views”. Cet article offre une analyse détaillée
du mécanisme de propagation du changement de modéle que nous proposons, de méme
qu un scénario réaliste de “departmental computing”.

1. INTRODUCTION

Departmental computing refers to the networked computing environment maintained by
the end-user departments. By virtue of being decentralized, it is believed to be more ef-
fective. Departmental computing began to be understood as an organizational decision
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support mechanism when Euske and Dolk [1990] reconceptualized it from the perspec-
tive of distributed group decision support systems (DGDSS). Similar views have been
expressed earlier in a more general context. Gorry and Scott Morton [1971] maintain
that the quality of decisions can be enhanced by incorporating data and decision mod-
els. Also, through an empirical study, Alter [1977] shows that there are two categories
of decision support systems (DSS), namely data-oriented DSS and model-oriented DSS.

Recent adoption of the Internet and intranets in managerial decision support sheds
new lights on the applicability of departmental computing by facilitating dynamic col-
laboration between departments along the value chain of an organization. Those geo-
graphically dispersed departments are in need of coordination and cooperation so that
they can perform separate but related functions as if they were in the proximity [Martin
1996]. Therefore, it is desirable to develop systems that can support multiple depart-
ments to perform collectively. In such systems, flexibility and agility must be warranted
because of their dynamic interactions.

As business problems become more complicated and require high-precision solutions,
mathematical models prove to be effective decision tools. Consequently, model man-
agement systems (MMS) are increasingly in demand where multiple departments share
large-scale mathematical models. Coordination and sharing of decision models takes
place on an on-going basis, and shared datasets for common models enhance collective
understanding of the business problems. In such an environment, making changes in
shared models is inevitable.

In a typical departmental computing model management scenario, corporate models
are maintained in a central modelbase server, while individual departmental views are
realized in client systems. Therefore, changes made to a shared model can cause incon-
sistency between the model revised by a department and the views rendered to other
departments that have been derived from the original model. This seemingly inconse-
quential anomaly can do serious harms, such as undermining the validity of the shared
understanding of the problem, impaired communications among the participating de-
partments, and ultimately, the questionable efficacy of the departmental computing with
distributed MMS. Thus, providing individual departments with synchronized views of
the models as well as maintaining consistency becomes a key factor. While a systematic
model change propagation mechanism is essential to distributed MMS [Ellis and Gibbs
1989, Huh and Rosenberg 1996, very little attention has been paid to model change and
view update and synchronization in a collaborative model management environment.

The purpose of this paper is to propose a collaborative model management frame-
work for coordinating model change and automatic view update in departmental com-
puting environments. We employ the generic model concepts [Huh 1993; Huh and
Chung 1995] as the underlying framework to uniformly accommodate diverse mathe-
matical models in collaborative MMS. With this framework, multiple model views on
the shared models can be readily represented. In order to establish a mechanism of
view synchronization, dependency management constructs and processes have been de-
vised. Model change coordination and view update mechanisms are described in detail
to synchronize departmental views when changes occur in the shared model. The pro-
posed framework adopts the object-oriented database management system (ODBMS)
for combining the structural constructs and change propagation mechanism in a single
formalism.

2. REQUIREMENTS OF
COLLABORATIVE MODEL MANAGEMENT SYSTEMS

Examination of model management literature reveals that a variety of methods have
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(a) Architecture of a Generic Model (b) Constructs and Relationships
Figure 1: The Basic Structure of Generic Model Concepts

been developed to represent algebraic decision models. Analytical modeling languages
such as AMPL [Fourer, et al. 1990], GAMS [Bisschop and Meeraus (1982)], IFPS/-
OPTIMUM |[Roy, et al. 1986], PAM [Welch 1987], and SML [Geoffrion 1992] are some
of the representation schemes most widely used by the practitioners, probably due to
the formality of their algebraic notations.

Artificial intelligence (AI) methods have also been extensively used for model rep-
resentation and reasoning, e.g., first-order predicate calculus [Dutta and Basu 1984],
graph [Liang 1986], frames [Chung and O’Keefe 1993; Liang 1993], and analogical rea-
soning [Mannino, et al. 1990]. Stemming from the data modeling techniques, relational
database approaches [Blanning 1985; Dolk 1988] have evolved to define and manipulate
models using set-based relations.

With an emphasis on model execution rather than model storage and retrieval,
a system-oriented framework [Muhanna and Pick 1994], object-oriented programming
language (OOPL) approaches [Le Claire and Sharda 1990; Lenard 1987; Muhanna 1994],
and object-oriented database management systems (ODBMS) [Huh 1993] have been
introduced.

Given the variety of formalisms for model management, collaborative MMS should
accommodate various departmental views on shared models. This is especially im-
portant for departmental computing using distributed MMS since an identical model
may be understood and represented differently depending on the department’s interests,
roles, needs, and the user’s modeling skills. For instance, while Procurement Depart-
ment wants to know if the vendors shipments are coming in on schedule, Marketing
Department may be interested in the delivery schedule of the customers orders. Like-
wise, Logistics Department may find it important to stay informed about the current
and expected inventory volume, and yet another department, say, Manufacturing, may
want to know if the product assembly is on schedule. Individual departments interact
with the shared mathematical models on the basis of individual user views by creating,
deleting, examining, or modifying the model components and datasets such as product
demand parameters, material cost, and inventory levels.

3. MODELBASE CONSTRUCTION USING SYSTEMS APPROACH

Mathematical programming models have hierarchically decomposable structures con-
sisting of multiple algebraic representations including objective function, constraints,
parameters, decision variables, constant values, and index sets [Fourer, et al. 1990;
Geoffrion 1987; Geoffrion 1992]. In generic model concepts, a model is characterized by
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Given i a set of products
%520 the number of production and sales periods
P _Cost, > 0 p € P : production cost per unit of product p
S_Cost, >0 p € P : storage cost per unit of product p

P_Capay 11 >0 peP, tl €{1,...,T}: production capacity of prod-
uct p in period t1

Demand, 2 >0 p € P, t2 € {1,...,T} : demand of product p in
period t2

Define Qpit1,2 >0 pec Bt etlilpe s Lk b2 -l E VT S8 ]

. units of product p manufactured in period t1 and
sold in period t2.

Minimize EpEP, te{1,..T}, 325{1,...,T}(P-C‘03tp + (82 — t1)SCost,,) Qp, 11,12

t2 > t1 : total cost over all periods for all products
considering production cost and storage cost of each
product

subject to Zwe{l,...,T} Qp,t1,t2 < PCapayp i1
pe P tl €{l,.. T} 2 > 1 : total units of
product p manufactured in period t1 must not exceed
the production capacity of product p in period t1

Ztle{l,“.,T} @p,t1,t2 = Demandy ¢

peP, t2e€{1,...,T}, t2 > t1 : total units of prod-
uct p sold in period t2 must be equal to the demand
of product p in period t2

Figure 2: Algebraic Formulation of a Production and Sales Scheduling Problem

a generic model type. A mathematical model is represented as an abstraction of a
problem. A generic model is composed of three types of ports: inports, outports, and
midports. Ports have a set of attributes and operations to describe the information
pertaining to algebraic expressions and data values. An inport accepts input datasets.
An outport produces computational result. A midport carries the rest of the data such
as the intermediate computation status or the model constraints. Ports are grouped into
modules, which are characterized by the module type. Modules can be integrated to
form a generic model, which is at the highest level in the generic model hierarchy.

Figure 1(a) shows the external interface of the generic model concepts. Model X has
two inports (in Module A) which receive input datasets from Manufacturing Department
and the corporate database. Two outports (in Module D) provide model execution
results to Marketing Department and Logistics Department. As such, a generic model
can represent business decision-making processes encompassing multiple departments,
where individual departments collaborate with each other by reciprocating datasets and
computation results via shared models.

The constructs of a generic model and their relationships are represented by a hi-
erarchical structure as shown in Figure 1(b) using Object Modeling Technique (OMT)
[Rumbaugh, et al. 1991]. Brief descriptions of the OMT notations are as the following:
The notation uses boxes and lines to depict classes of objects and their relationships.
Among the relationships, the inheritance relationship is denoted by a triangle on the
line, and the aggregation relationship is represented by a diamond. Multiplicity of
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association is represented by a black circle at the endpoint of a line.

To illustrate the proposed framework, let us take a simple and yet fairly realistic
business scenario. Shown as Figure 2 is a model of potential production and sales
scheduling problems whose objective is to minimize the production and storage cost,
while operating within the production capacity and satisfying the market demand.

P = {ski, snowboard}
=3

Production and storage cost (P_Cost,, S_Cost,)

Cost | Production cost | Storage cost

Product
Ski 10 3
Snowboard 3 2

Production capacity (P-Capay ¢1)

Period 1 i) 3
Product

Ski 2000 | 2000 | 3000
Snowboard | 1500 | 1500 | 2000

Forecasted demand (Demand,, ;2)

Period 1 2 3
Product

Ski 1500 | 1000 | 3500
Snowboard | 1200 | 800 | 2500

Figure 3a Example Instance of a Production and Sales Scheduling Problem Defined in
Figure 2: Input Datasets with Two Products and Three Periods

This general model can be instantiated when specific data can be provided to describe
the particulars. Figure 3 (a) presents a collection of input datasets for a simple case
where two products (ski and snowboard) and three periods (1, 2, and 3) are under
consideration. Using the given data, a linear programming model can be instantiated
as shown in Figure 3 (b).

As shown, the model structure is deliberately and explicitly separated from the
datasets so that classifying the ports can become straightforward. The ports associated
with the provided datasets become inports, such as product type (P) and period (7).
Also, those that are instantiated by parameters become inports, such as production
cost (P_Cost), storage cost (S_Cost), production capacity (P_Capa), and demand (De-
mand). On the other hand, the ports that produce output become outports, such as
production-and. sales.quantities.in specific period (¢)). Finally, the rest of the model
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components become midports encompassing all the constraints and functions such as
production capacity, demand constraints, and overall cost computing function (the ob-
Jective function). These ports are then aggregated into specific groups such as sets,
parameters, variables, objective, and constraints to form modules, which in turn are
aggregated into a generic model. In this example, the resulting model is a production
and sales scheduling model. Figure 4 represents the structuring of the model as in the
form of model components stored in the modelbase.

Minimize 10Qski,11 + 13Qski,12 + 16Qski 13 + 10Qski,22 + 13Qski 23 + 10Q sk 33
+8Qsnow,11 + 10Qsnow,12 + 12Qenow,13 + 8Qsnow,22 + 10Qsnow,23
JF8625nofw,33
Subject to:
Qe 0 Qok 15+ Qe 13 < 2000
Qski,22 T Qski,23 < 2000
Qski,33 < 3000
anow,ll I anow,l? ng anow,l(} S 1500
anow,Z? 43 anow,?S S 1500
ano‘w,SB S 2000
Qski,11 = . 1500
Qski12 + Qski 22 =000
Qski, 13 + Qoki,23 + Qski 33 = 3500
Qsnow,11 = 1200
anow,l? 55 anow,22 = 700
Qenowis + Qanowzs + Qamowgs - = 2600

Figure 3b Example Instance of a Production and Sales Scheduling Problem Defined in
Figure 2: Linear Programming Model Instantiated by the Input Datasets

As mentioned earlier, the mathematical models shared by different departments can
be stored and managed in a corporate modelbase server using generic model concepts
with object-oriented database constructs. Once a mathematical model is created and
stored in a modelbase, it is accessed and manipulated by individual departments through
unique departmental views to reflect the departmental information needs and presenta-
tion preferences. Model views can be categorized into two types: model structure views
and model instance views. Model structure views pertain to the model structure, as
shown in Figure 4, and are usually used by skilled modelers to build a new model or
to modify the structure of an existing model. In contrast, model instance views show
the data contents of the model ports, including input datasets, computational results,
and intermediate computing status of the model. The functional departments such as
manufacturing, marketing, and logistics, are most likely to use the model instance views
to work with their operational data.

Let us take Figure 5 to illustrate the model structure views. Presented here are two
views (algebraic view and genus graph view [Geoffrion 1987]) for the problem described
in Figure 2. The algebraic view is literally the model structure view represented by al-
gebraic expressions, while the genus graph view is an acyclic directed graph showing the
dependency relations among the genus identified through structured modeling [Geoffrion
1987; Geoffrion 1992]. Additional model structure views such as Block-Schematic rep-
resentation, Activity-Constraint Graph, Netform Graph [Greenberg and Murphy 1995;
Muhanna and Pick 1994) can be used to represent equivalent model structures depending
on the user department preference and familiarity.
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eric
Gen Production_Sales_Scheduling_Model
Model i
Type
Module P
Type arameter Variable Constraint .| Objective Model
7 Structure
Lol Percd || P_Cost || s_cost || P_ca T
Type e _Co! _Cosf '_Capa otal_Cost
R ===4====ﬁ=======================================
y y v | 4
ski ) ski: 10 ski. 3 Model
snowboard snowboard : 8| | snowboard - 2 Instance
v v
ski 1: 2000, snowboard 1: 1500 ski 1: 1500, snowboard 1: 1200
ski 2 : 2000, snowboard 2 : 1500 ski 2 : 1000, snowboard 2 : 800
ski 3 : 3000, snowboard 3 : 2000 ski 3 : 3500, snowboard 3 : 2500

Figure 4. A Generic Model Representation of Production and Sales Scheduling Model

Minimize TOTAL_COST T:CAPACITY T:OEMAND
=SUM [ p IN PRODUCT, t1 IN PERIOD, t2 IN PERIOD |

(P_COST(p) + (t2-t1)*S_COST(p)) * QUANTITY(p, 11, t2) ]

Subject to :

SUM [12 IN PERIOD | QUANTITY(PRODUCT, PERIOD, 12) |
< CAPACITY (PRODUCT, PERIOD)

SUM [ t1 IN PERIOD | QUANTITY(PRODUCT, t1, PERIOD) |
= DEMAND (PRODUCT, PERIOD)

FROCUCT(DN
_QUANTITY

P_cosT s_cosT P_CAPA pEmanp | | PRoDUCTION_SALES
— _PERIOD

L

(a) Algebraic View (b) Genus Graph View

Decision Variables : QUANTITY 20

Figure 5: Examples of Model Structure Views of Production and Sales Scheduling Model

4. CHANGES IN THE MODEL AND
THEIR EFFECTS ON DEPARTMENTAL VIEWS

A typical mathematical programming model stored in the modelbase undergoes its de-
cision support life cycle. During the intelligence and design phases, it will change con-
tinuously since problem identification, model formulation and subsequent refinements
may require iterative and incremental model definition [Sprague 1980]. Also, along the
institutional use of the model, it may change or improve continually in its structure in
response to the dynamic business environment. If the developer of the model in Figure
2 wants to add a new element (transportation cost, for instance), the existing model
structure should be changed accordingly as described below.

As shown in Figure 6 (a), a new variable, T_Cost,, representing the transportation
cost for each product, should be added. Also, the objective function should be modified
as well to include the transportation cost. When the underlying structure changes, the
dependent structure views should be modified to reflect the structural changes. This is
depicted in Figure 6 (b). Once the model structure has been developed and stored in
a modelbase, a specific dataset may be applied through its model instance views, and
the model can be executed using a solver algorithm like the Simplex method.

The departmental instance views may take different forms depending on various
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Given s
T_Cost, 20 p e P : transportation cost per unit of product p

Minimize Xpeptefl,. T, 2e{l,. T (P Costp+(t2—-t1)S Costp+T Costy) Xyt

.....

t2 > t1 : total cost over all periods for all products considering production cost,
storage cost, and transportation cost of each product

(a) An Example of a Structural Change on the Problem Defined in Figure 2

T:CAPACITY T :DEMAND

Minimize TOTAL_COST
= SUM [ p IN PRODUCT, t1 IN PERIOD, 12 IN PERIOD |
(P_COST(p) + (12-t1)°S_COST(p) + T_COST(p))
* QUANTITY(p, t1,12) ]

TOTAL_COST

Subject to :

SUM [ 12 IN PERIOD | QUANTITY(PRODUCT, PERIOD, t2) |
< CAPACITY (PRODUCT, PERIOD)

SUM [t1 IN PERIOD | QUANTITY(PRODUCT, t1, PERIOD) |
= DEMAND (PRODUCT, PERIOD)

PRODUCTION_SALES
_PERIOD

Decision Variables : QUANTITY 20

(b) Reflection of a Model Structural Change on User Views

Figure 6: Structural Change of a Model and its Reflection on User Views

Effects Model Views
Locus of Change Model Instance View | Model Structure View
At Instance Level Change No Change
At Structure Level Change Change

Table 1. Effects of model change

factors described earlier. Presented in Figure 7 are two examples of model instance
views for the model presented in Figure 2.

Figure 7 (a) provides the model instance view employed Manufacturing Department.
The input data containing the production cost and production capacity per product
type is inserted through the departmental view, and the production schedule over the
production periods per product type is generated from model execution. Figure 7 (b)
presents a different model instance view for both Marketing and Logistics departments.
Through this view, the market demand forecast and the storage cost are entered, and
a product delivery and sales schedule are obtained.

This simple and practical example illustrates how models can be shared and manip-
ulated by multiple operational departments through their departmental instance views.
In such collaborative MMS environments, when a portion of a model instance (e.g.,
input data) is altered by one user department, such a change should be known to other
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H input Data }—

* Production Cost * Production Capacity
Production Period | Jan.~ | May~ | Sep. ~
Product Cost Product Agpril Aug. Dec.
Ski 10 Ski 2000 2000 3000
Snowboard 8 Snowboard 1500 1500 2000

—{ Result }

* Production Schedule

Period | Jan. ~ May ~ | Sep. ~ Total
Product April Aug. Dec. Production
Ski 2000 1500 2500 6000
Snowboard 1500 1000 2000 4500

(a) Manufacturing Department’s Model Instance View

Input Data
+ Demand Forecasting * Storage Cost
Period | Jan. ~ May ~ | Sep.~ Storage
Product April Aug. Dec. Product Cost
Ski 1500 1000 3500 Ski 3
Snowboard 1200 800 2500 Snowboard 2
bl
—’ Result I
* Delivery and Sales Schedule - Product : Ski * Delivery and Sales Schedule - Product : Snowboard
Sales | Jan.~ | May~| Sep.~| Total Sales | Jan.~ | May~| Sep.~| Total
Delivery April Aug. Dec. | Delivery Delivery April Aug. Dec. | Delivery
Jan. ~ April 1500 500 2000 Jan. ~ April 1200 300 1500
May. ~ Aug. 500 1000 1500 May. ~ Aug. = 500 500 1000
Sep. ~ Dec. 2500 2500 Sep. ~ Dec. e 2000 2000
Total Sales 1500 1000 | 3500 6000 Total Sales 1200 800 2500 4500

(b) Marketing and Logistics Department’s Model Instance View
Figure 7: Example of Instance Views of Production and Sales Scheduling Problem

departments that will use the model for their departmental decision making.

Changes in the model influence the model views differently depending on where the
changes are made. If the change is made at the instance level, only the model instance
views will change. On the other hand, the change made at the structure level will affect
both the model structure views and the model instance views. Table 1 summarizes the
relationships between the changes in the model and their effects on the model views.

Unlike the model instance changes, in the event of model structure changes, the
changed model structure should be first propagated to the various departmental model
structure views. Then, the changed model structure with the existing or new model
instance should be re-calculated and the revised computation results should be noti-
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key

values

lo—|

sendUpdate (aspect)

deletelnstanceView (userview)
getlnstanceViews ()

ChangeContent Supporter DependencyDictionary ——d UserView
aspects dependencyDictionary instanceViews clientiD
hangeContents structureViews viewlD
addAspect (aspect) ehange
deleteAspect (aspect) changed (aspect) addinstanceView (userview) sendAddView (supporter)

sendDeleteView (supporter)

updateView (supporter, aspect)

addStructureView {(userview)
deleteStructureView (userview)
getStructureViews ( )

Generic Model
S

Generic Model

(Object-Oriented
Modelbase Constructs)

Model Views

, ModeltnstanceView J

[ ModelStructureVnevL'

Algebraic Genus Manufacturing Marketing
View Graph Department Department
View View View

Figure 8: Object Model for Change Propagation in MMS

fied to the dependent model instance views. In the following sections, we propose a
change propagation mechanism to support such requirements in departmental MMS
environments.

5. OBJECT-ORIENTED DATA MODEL
FOR CHANGE PROPAGATION MECHANISM

The mechanism of propagating changes from a shared model to its departmental views
can be best represented by the object-oriented paradigm. A supporter is an object
representing a class of models shared by multiple departments. The model in Figure 4
is an example of a supporter. Another object, userview, represents a class of depart-
mental views of the supporter. The model structure views in Figure 5 and their model
instance views in Figure 7 are examples of userviews of the supporter in Figure 4.

Changes made to a supporter should be reflected in the userviews, and the mecha-
nism to propagate such changes is shown in Figure 8 using OMT. According to the OMT
notations, each class is represented by three rows. The name of the class is in the top
row, while the middle and bottom rows contain the class attributes and the operations,
respectively. At the core of this mechanism is the dependency dictionary object,
which defines and maintains the dependency relationships between the supporter and
the userviews.

The DependencyDictionary class in Figure 8 connects the Supporter and User-
View classes. Since both userviews (instance views and structure views) should be
supported in the departmental computing environment, the DependencyDictionary class
holds two attributes (the instance Views attribute and the structureViews attribute).
Defining and enforcing the dependency relationships between the supporter and its
userviews is done by three types of manipulation operations: two addition operations
(addInstanceView(), addStructureView()), two deletion operations (deleteln-
stanceView(), deleteStructureView()), and two retrieval operations (getInstance-
Views(), getStructureViews()) on the userviews for each supporter.

The dependency relationship between a supporter and a userview is generated when a
new userview is created by a department at its local client. More specifically, when a new

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyypan



COLLABORATIVE MODEL MANAGEMENT 383

departmental view is created, the sendAddView() operator of the UserView class is
invoked to send a message to a supporter informing that a new dependency relationship
has been generated. Likewise, when a userview is removed, the sendDeleteView()
operator is invoked in order to inform the supporter of the removal of the dependency
relationship. Since the departmental view is created in a client location, the UserView
class needs to have two key attributes (clientID and viewID) to identify the client,
which is the owner of the userview, and the view itself.

Meanwhile, when a change is made to a supporter, the changed() operator in
the Supporter class is invoked, which triggers the sendUpdate() operator to send an
update request message to all the registered userviews. Upon receiving the requests,
the relevant userviews execute the updateView() operator in the UserView class.

As in any multi-user environment, collision of simultaneous attempts to modify the
same supporter by more than one department should be avoided. That is, the change
operations should be performed within a transaction guard to ensure such features as
consistency, permanence, serializability, and recovery [Lamb, et al. 1991]. In what we
termed transaction management, the change requests are propagated to userviews only
when the transaction reaches a “commit” state, i.e., when the most recent operation
on a supporter has been completed successfully. To accomplish this, we use the “trans-
action” feature of ODBMS. In support of change request, the ChangeContent class
is additionally provided to register the contents involved in the change. The detailed
contents of the change are kept through the aspects attribute in the ChangeContent
class and the ChangeContent object is linked to the supporter by the changeContents
attribute in the Supporter class. When the transaction is completed, the ChangeCon-
tent objects are either propagated to the userviews or removed in its entirety depending
on the final status of the transaction, i.e., commit or abort.

Since the proposed class definitions are generic, the Supporter and UserView classes
can be inherited down to generic model and departmental model views. In addition, the
operations can be custormized to suit collaborative decision making across departments
because they are declared in such a way that they can be customized by the participating
departments. Figure 8 shows an inheritance hierarchy of the Supporter and UserView
classes using OMT. The generic model structure in Figure 1 and its example structure in
Figure 4 inherit the properties defined in the Supporter class, while its dependent views
(structure and instance) inherit the properties of the UserView class. Both subclasses
can be augmented with additional structural attributes and functional operations. Thus,
while the superclass handles generic change propagation tasks, the focus of the subclass
is on the collaborative model management tasks.

6. AUTOMATIC MODEL VIEW UPDATE
IN DEPARTMENTAL COMPUTING

The change propagation mechanism described thus far has set the stage for our next,
more detailed discussion. Propagation of model changes using dependency relationships
takes place at two distinct levels. At the lower level, an internal dependency dic-
tionary maintains the dependency relationships between a supporter and its userviews
within a client process. At the upper level, an external dependency dictionary man-
ages the dependency relationships between a supporter on the server and its dependent
client processes containing the departmental model views. This concept is depicted as
Figure 9.

In this diagram, a server containing the modelbase is placed in the middle, while a
cluster representing a client system such as Manufacturing Department or Marketing
Department is on either side. The shaded elements (e.g., A and B) represent supporters,
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Figure 10: Change Propagation Server and Change Propagation Client

or the models stored in the modelbase. The transparent elements in an oval (e.g., al,
a3, and bl) represent the userviews created by client departments and stored at client
sites (e.g., CL1). For example, the diagram shows that the model instance userviews
(al, a3) for supporter A are created in both CL1 and CL2, whereas a model structure
view (a2) for A is created in CL1 only. When the modelbase server consults with
the external dependency dictionary, it recognizes that model instance views have been
created in clients CL1 and CL2, and a model structure view in CL1. Meanwhile, CL1
has two model views of supporter A, namely al (model instance view) and a2 (model
structure view). Likewise, CL2 has one model view of A, namely a3 (model instance
view). Similar information is maintained internally within each client system.

Maintaining the dependency relationships in two separate dependency dictionaries
enables the networked subsystems to function independently so that the network load
required to propagate changes can become significantly less than managing the whole
dependency information on the server. The benefit is even greater as the number of
departmental clients increases since the number of userviews will become substantially
larger, subsequent to the growth of the number of clients.

The two objects in Figure 10, Change Propagation Server and Change Prop-
agation Client, embody this approach to maintain the dependency relationships in
two levels. As the names indicate, Change Propagation Server is on the server side
while Change Propagation Client is on the client side. Their primary task is to support
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Figure 11: A Sequence Diagram on a Change Propagation Process

communications between the server and the clients based on the information contained
in each of the dictionaries. As shown in Figure 10, the named arrows represent the mes-
sages of the event occurring between the components. Change Propagation Server looks
up the external dependency dictionary to find out which clients contain the userviews
in various departments, while Change Propagation Client uses its internal dependency
dictionary to stay informed about the views created in the client.

Described below is how the Change Propagation Server and the Change Propagation
Client interact with each other to play their respective roles when a change is encoun-
tered. The process takes place in three phases. During Phase I, the communication link
is established between a server and its clients. In addition, the dependency relationships
between the supporter model and its dependent userviews as well as the relationship
between the supporter and its dependent client processes are registered in the internal
dependency dictionary of each client and the external dependency dictionary.

Described here is the change propagation process that takes place during Phase II
(at the server) and Phase III (at the client). The sequence diagram of UML (Unified
Modeling Language) [Booch, et al. 1999] in Figure 11 is helpful in describing the
sequence of messages as well as the objects exchanging the messages. In the diagram,
an object is shown as a box at the top of a dashed vertical line called the object’s
lifeline. Each message is drawn as an arrow between the lifelines of two objects, and time
progresses downward. To represent a condition behind a message, a special notation is
used such as [changed = “structure”]. In that case, the message is passed only if the
condition is met. An asterisk is used to denote that a message is sent many times to
multiple receiver objects.

Phase II deals with the change propagation process in the modelbase server. First,
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when the model structure or model instance changes, the content of the change is regis-
tered in the ChangeContent object linked to the changed model. Only after the entire
transaction has been completed, the next change propagation process can start. Qther-
wise (i.e., the abort status), the change is not propagated to the departmental userviews.
After the update operations are concluded, the model is executed again now with the
changed structure or changed instance. The new model execution causes a change at
the instance of the supporter model’s outports, and the change contents of the out-
ports instances are added to the ChangeContent object as well. In the next step of this
phase, after the model change and execution processes have been terminated without
any error, the changed supporter sends a message to the Change Propagation Server,
which initiates the concrete change propagation steps. Upon receiving the message, the
Change Propagation Server checks its external dependency dictionary to identify the
clients that contain the userviews of the changed model.

During Phase III, the change propagation process takes place in the client. Different
process may be invoked depending on the locus of the change in the supporter model:
l.e., structure or instance. In the case of model instance change, the change propagates
only to the instance views in various departments. On the other hand, if the change is
in the model structure, the propagation process first updates the structure views, and
then the revised model execution results are propagated to the instance views.

The first step in Phase III is propagation of the structure change to the Change
Propagation Client with the structure views. Upon receiving a structural change mes-
sage, the Change Propagation Client refers to its internal dependency dictionary to find
the specific structure views created in the client. Then, the change contents are re-
flected on the views appropriately according to the types of the views. The second step
involves propagation of the instance change (including the model execution results) to
the instance views. If the model’s instance change is propagated to the Change Propa-
gation Client in the client containing the instance views, the Change Propagation Client
uses its internal dependency dictionary, and the identified instance views are updated
adequately to reflect the instance change, completing the whole process.

7. ADVANTAGES OF THE PROPOSED PROPAGATION MECHANISM

The proposed framework for the model change propagation mechanism is uniquely ben-
eficial in several respects. In this section, we present the advantages of the proposed
approach compared to other MMS methodologies which tend to neglect the need for
synchronization of model changes across different user entities that a modelbase serves.

In this framework, the generic model concepts play the key role, which enables var-
ious mathematical models to be represented in a uniform way, by way of an object-
oriented database management system (ODBMS) that combines the modeling con-
structs and change propagation mechanism in a single formalism. The ODBMS ap-
proach enriches the change propagation and view update mechanisms with the built-
in concurrency handling and transaction management capabilities, ensuring a reliable
MMS architecture for collaborative computing environment.

Furthermore, the models stored in the modelbase can be concurrently accessed and
manipulated by way of the individual department’s userviews. Departmental userviews
are further grouped into instance views and structure views. The instance view shows
the input datasets and model computation results, while the structure view shows the
model schema. Through these views, individual departments may revise their portion
of the model using their datasets, execute the model, and even modify the structure of
the model.
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Next, the proposed method supports the autonomy of user departments modeling
activities. Changes in the model instance or in the model structure can be initiated
by any user department as necessary. Such changes are immediately and automatically
propagated to other department. When a userview is created in a department, a corre-
sponding dependency relationship between the departmental view and the shared model
is registered for subsequent management. With the changes at the model instance level,
only the dependent model instance views are updated. However, when the changes are
at the model structure level, not only the dependent model instance views but also
dependent model structure views should be updated.

Finally, by differentiating the superclass objects (responsible for the change propa-
gation mechanism) and the subclass objects (responsible for the model representation in
the departmental views), view updates can be handled differently depending on the con-
tents and presentation styles of the dependent departmental views. Thus, the superclass
objects perform the core collaborative computing functions including client-server com-
munication, dynamic dependency relationship management between the shared models
and their dependent user views, and coordination of the changes. The subclass objects
operate on the departmental views so that their model views can be an extension of the
shared model to accommodate their own uniqueness and preferences.

8. SUMMARY AND CURRENT STATUS OF THE RESEARCH

In departmental computing, distributed MMS can help multiple departments share
decision models to perform their tasks collaboratively while maintaining their own views
of the shared models. The structure or instance of a model stored in the modelbase
server is expected to change due to the dynamic nature of the business environment.
Therefore, it is necessary to provide a mechanism to propagate the changes to the related
departments so that their views of the modified model may be brought up to date and
consistent. We described a collaborative MMS framework that facilitates the change
propagation mechanism and provides synchronized and consistent views of evolving,
shared models in departmental computing.

An Implementation of a prototype distributed MMS for collaborative modeling to
support multi-view presentation and change coordination with automatic view update
has proven the efficacy of the proposed framework. In this Windows N'T-based MMS,
the object types and the operations proposed in the mechanisms have been fully imple-
mented without any conceptual distortion using C++.
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